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ABSTRACT 

The electric f i e l d  outside a steadily rotating, uniformly 

magnetized sphere is iletermined for  the general case i n  which 

the magnetic and rotational axes, though both passing through 

the center of the sphere, may be oriented at  ;my angle relative 

t o  each other. 

surrounded by a conducting plasm of charged particles which 

are constrained t o  move along; the magnetic f i e ld  lines. The 

electric f i e ld  generated by the rotating sphere is found t o  be 

just  that required t o  cause the surrounding plasma t o  rotate 

with tile sphere. When the magnetic and rotational axes are 

parallel  or  mti-parallel, co-rotatioa of sphere and plasma is 

caused by the 3 x 'PI dr i f t .  

acceleration plays a role i n  causing co-rotation. 

e lectr ic  f i e ld  i n  a reference frame rotating with the sphere 

is  identic- zero for  the syxnetric (dipole) magnetic f i e ld  

under consideration. Therefore, charged particles in  the plasma 

do not change energy i i i  th i s  frame, although they appear 

alternately t o  gain and lose slncLu maints of energy i n  a non- 

rotating frame. 

f i e l d  generated by the earth's wobbling" magnetic axis in 

the  rea l  magnetosphere, distorted by the solar Wind, probably 

The sphere i s  perfectly conducting and is 

For a31 other orientations Fermi 

The 

It is concluded, Iiowever, tha t  the electr ic  
?? 



3 

- does cause charged particles to experience net energy changes 

over a number of revolutions around the earth. 

a mechanism for diffusion of plasma and of higher energy 

particles through the magnetosphere. 

effects must take into account the high conductivfty of the 

plasma i n  the magnetosphere if they are to give correct 

results. 

It thus provides 

cslculations of such 
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The role tha t  the earth's rotation plays in  determining 

the characteristics of the electric and magnetic fields, the l o w  

energy plasm&, and the high energy tragped radiation i n  the 

magnetosphere is essentially unknown. Certain authors, i n  

developing models of the  magnetosphere, have included a 

circulatory pattern of plasma convection driven by the earth's 

rotation [Axford and Hines, 1961; Johnson, 19601. 

law-latitude magnetic f ie ld  l ines  is assu?ued t o  rotate with 

Plasma on 

the earth, whereas plasm on the high-latitude l ines  which form 

the magnetospheric t a i l  is assumed t o  rotate i n  the opposite 

direction about an axis i n  the tail. 

inferred f r o m  high-latitude magnetic deviations outward into a 

model of the nagnetosphere, Taylor and Hones t19651 have shown 

By mapping electr ic  fields 

tha t  a plasma circulation pattern of tfiis nature does, indeed, 

seem t o  be present. 

Davis El94.7, 1983 showed t h a t  plasma surrounding a 

rotating, conducting, magnetized sphere will rotate with the 

sphere i f  the plasma particles are constrained t o  move along the 

magnetic l ines  of force. 

i n  the plasma unt i l  the electric field 

Under thesc conditions charge will f l o w  
_. . 
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(as seen i n  a nonrotating reference frane) is established i n  the 

plasma. Here t is the angular velocity of the sphere, r is 

the radial position vector and 5 i s  the magnetic f i e ld  vector. 

4 

The same sphere, rotating invacuo, however, generates a 

quailrugole electric f ie ld  in  the surrounding space [Simnn, 1920; 

Davis, 19471 and this  will - not cause i n d i d d u d  ions and 

electrons t o  rotate with the angular s?eed of the sphere. 

In all of the works referred t o  above, the  magnetic and 

rotational axes of the sphere are assumed parallel (or anti- 

parallel)  and the inductive electric f ie ld  associated with the 

wobble of the dipole is ignored. Terletzky [1946l considered 

the effect of the induction field generated by a rotating, 

magnetized sphere with nonaligned rotational and magnetic axes 

and concluded t h a t  i n  the space around the earth particles 

would be energized t o  tens of kilovolts by the component of this 

electr ic  f i e ld  parallel  t o  the magnetic l i n e s  of force-an effect 

which wouldbe of considerable geophysical importance. However, 

Terletzky's e lectr ic  field was simply the Meld induced by a 

magnetic dipole of moment p, rotating with angular velocity 2: 4 
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where. f' is the radial position vector i n  a nonrotating frame 

of reference. Terletzky ignored the electr ic  polarization 

chaxge generated on the earth and, equally important, the 

charge gerierated i n  the conducting plasma around the earth. 

One would expect that  the plasma's high conductivity paral le l  

t o  the magnetic field l ines  essentially cancels the parallel  

component of the induction field; hence the particle energlza- 

tion process visualized by Terletzky probably does not exist. 

However, the component of the induction f ie ld  perpendicular 

t o  the magnetic lines is  

t o  energize or de-energize particles by its action i n  the direc- 

t ion of their  magnetic gradient and l ine  curvature drifts. 

Backus 119563 studied the rotating, magnetized sphere 

cancelled out, and maybe expected 

with arbitrarily aligned rotation and magnetic axe& 

he included the sphere's polarization charge i n  h i s  calculation, 

he, too, ignored the important effect of the sphere's imersion 

i n  a conducting plasma. 

discussion, stating that "the medium outside the stars is a 

Though 

He alludes t o  t h i s  deficiency i n  his 

good conductor so that the results of t h i s  paper cannot be 

. 
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applied t o  the computation of the e l e c b i c  f ie ld  outside a 

rotating magnetic stax. I t  

,--- 

In  the present paper we t r ea t  bhe case of a steadily - 
rotating, uniformly q n e t i z e d ,  and perfectly conducting sphere 

w i t h  arbi t rar i ly  aligned axes of rotation and magnetization. \ 
.1* 

1 The sphere is  surrounded by, and is  i n  direct  contact with, a 

tenuous plasma i n  which the conductivity parallel t o  the 

magnetic f ield l ines  is h f i n i t e  a,nd t h a t  peqentlic;ila3. t o  

the magnetic l ines  is zerod The electric f ie ld  i n  a non- 

rotating *ame of reference is ca,lculated and then used t o  

determine the 3 x 
particles. As in the caae with aligned (antipasallel) axes 

treated by Davis [1948], we find that the  charged particles 

co-rotate with the sphere. 

drif’t and energy changes of the  plasma 

Here, hawever, co-rotation 

involves a m r e  subtle mechanism than i n  t h e  case with 

aligned axes, requiring that a mirroring par t ic le  travel 

faster (as viewed from the rest-frame) during the  half-bounce 

when its velocity along a magnetic l ine  has a component In the 

direction of the sphere*s rotation than during the other half- 

bounce. It is found that  the electric field seen i n  t he  r e s t  

frame produces exactly tbe increases and decreases of kinetic 

energy necessary t o  achieve this effect. 
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A. Formulation of Problem and 
Method of Solution 

A perfectly conducting sphere of radius, a, rotates 

about an axis through i ts  center with angular velocity, Q) 
3 

The sphere is uniformly magnetized and i t s  internal 

magnetization vector p is inclined at an angle y with 

respect t o  u). Let  k and ^m be unit vectors paral le l  

t o  W and p, respectively, as shown i n  Figure 1. Unit 

vectors i and j lis i n  the plane normal to the rotational 

axis  of the sphere but do not rotate with it. 

specifies a fixed observatim point. 

-+ 

4 A 

4 4 

A A 

4 

The vector r 

The where is imnersed 

in  a tenuous plasma of infinite conductivity parallel t o  the 

extern& magnetic field lines and of zero conductivity normal 

t o  these lines. The anisotropic conductivity of the plasma 

is equivalent t o  the condition that E*B = 0, where 2 
and 5 are the external electric and magnetic fields. The 

problem is t o  determine the E f i e ld  external t o  the sphere, 

4 4  

4 

88 seen by an iner t ia l ly  fixed observer. 
-e 

A solution for the external E field proceeds as 



1. 

2. 

3. 

B. 
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Determine the  sphere's internal  e lec t ros ta t ic  potent ia l  
i n  order t o  establieh s bounctsry condition on the poten- 
tial at  t h e  surface ~ f t h e  sphere. 

Use the constraint E*B = 0 ( i n  the nonrotating refer- 
ence frame) t o  obtain a d i f fe ren t ia l  equation for the 
unlmown external potential  lp. 

Solve the resulting different ia l  equation f o r  ]I! stibject 
t o  the boundary condition at  the sphere's surface. 

4 +  

Internal  Potential 

Backus [1956] has sham that the general sclution for the 

potent ia l  inside a rotsting, conducting magnet is (to within an 

ssbitrasy coristant) 

where 

With 

4 

d is the  l inear  velocity of an in te r ior  point which 
rotates  with the sphere, 

A is a vector potential  whose curl gives the internal  
(and, i n  our case, uniform) xqnet izat ion,  and 

4 

c is the speed of light. 

Expansion of the datted cross products gives 
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where, f r o m  Figure 1, (r, 9, 9) are the spherical polar 

coordinates of an in te r ior  obsemt ion  point i n  the direction 
A fi 

of the unit  vector n, and 6 is  the angle between n 

and m. By t b e  s;:irriczJ trignzmetric addit5on formula, L 

cos + = cos o .cos y + sin e s in  y COB (I 4) . 
Hence, 

sin o cos y - cos e cos (9 - ot) sin 
(7) 

2 
= s i n  e 

3 ca 

The expression above gives the in te r ior  p o t e n t i d  of the rotat ing 

sphere. At the surface (r = a) 

- wt) s i n  y } 
(8) 

NJl 
C& 

v = t- Fin Q sin e cos y - cos 8 cos (9 



C. Differential J3patiozl 
fo r  i6 

4 4  

The constraint Era = 0 provides a d i f fe ren t ia l  equation 

for the external pofxnti3,l E .  A general solution of Maxwell's 

equations f o r  E is 
- 

where 2 is a vector potential. fo r  the magnetic field 5. 
(We shall have occasion, la te r ,  t o  refer t o  the first term on 

the right hand side of this eqwtion as the e lec t ros ta t ic  f ie ld ,  
-DS 
E, and t o  the second tern as the induction field,  3.) With the 

4 

expression above for z, and with 5 - V x A, 

= - ( V I  + $ d)* ( V x x )  = 0 .  (9) d t  

A rigorous solution f o r  

that 

charge density contributes t o  the spatial dependence of 2. 

iii i n  the presence of plasma would.demand 

be t reated as an unknown, since a time varying external 

Condition (9 )  would then be solved fo r  the two unknowns 

A subject t o  knuwn (or assmed) boundwy conditions on both 

and 
+ 

potentials at the earth's surface. Tfie Lorentz gauge, 



couldbe wed a8 a second relation6,ip between the two unknowns 

31 and A. In the work reported here, however, m approximate 
4 

solution for 1 i n  the presence of plasm was obtdned by assuming 

that "A is a vector potential for a magnetic dipole, i .e.,  

f'rom which 

In spherical coordinates, (r, 8, g), the components of th i s  f i e l d  

axe: 

Br = 9 [cos 
r 

0 COS 7 + s in  8 

e COS 7 - cos Q 

($ - w t )  sin y1 

s i n  7 cos (9 - w t ) l  

sin y cos ($ - &)I 

(loa) 

Since ';r specifies EUI inertially fixed observation point, 

4 
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whicli is the electrfc f ie ld  used by Terletzky E19461 i n  his 

ca;lculation of the energization of particles i n  the wobbling 

dipole field of the eerth. 

The components of t h i s  f i e ld  in  spherical coordinates 

are: 

E L 0  r 

4 = % sin 7 cos (fi - rut) 
cr  

$ = + sin 7 cos e sir. (fi - wt) . 
cr  

Use of (10) and (11) i n  (9) and the eqansion (6) leads t o  the 

partidl  differential  equation 

CSQ - a r  2 [cos o cos y + sin 8 s i n  y cos (I - W) 3 

1 a;br + - [sin o cos 7 - cos 8 s in  y cos (9 - w)I - r a8 

[ s i n  7 sin (g - *)I 3 1 
r s i n  9 

+ 

= + sin 7 [cos e sin y - sin e cos 7 cos (fi - rut)] 
c r  

fo r  the external potential E i n  spherical coordinates. 
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D. External Potential and 
Field 

A solution of 

condition (8) is 

P = E s i n  cr 

(13) for Q which satisfies the boundary 

8 [sin 8 cos y - cos o cos (9 - urt) sin 71. 

(14.1 

The negative gradien, of this potentia3 is the electrostatic 

field 2' necessary to cancel the component of the induction 

field 3 along the magnetic lines of force. Explicitly, the 

co~ponents of I'Es in spherical coordinates w e  

E: = + sin o Csin e cos 7 - cos o sin 7 cos ($ - cut;)] 
cr 

E: = -e Csin XI co8 y - cos 29 sin 7 cos (I - cut)] 
a cr 

E; cr 

Finally, the complete external field, Ea in the presence of 

= - % cos Q sin 7 sin (8 - art) (15) 

4 

conducting plasma is 

4 E - ( - -  1 a x  
c a t  + v m) a 

From (12) and (15) the components of the complete 3 field 

in spherical coordinates are 



. 

E~ = % sin e [sin 0 cos 7 - cos 8 cos (9 w t )  sin 71 
cr 

5 = - s i n  Q cos + 
2 cr 

% = O  

where the angle $ between and ‘;t i s  given by (6). 
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The external volume charge demity correspondix t o  the 
-+ 
E f ie ld  i n  (16) is given by 

The charge density varies both spatially and t emporay  at rn 

iner t ia l ly  fixed observation point. 'The absolute value of the 

maximun charge density is, for  the parametersr, p, 0, and 7 

applicable t o  the earth, approximately 

where n is the radial  distance i n  ear th  radii. This requires 

a difference of only - lOD9/cm3 between the number densities of 

protons and electrons i n  the plasmec at - 5 Re, or only - 10 

of the ambient par t ic le  density at th i s  distance. 

-11 

The continuity equation 



m y  be used t o  determine the current Eystem corresponding t o  the 

time charge density in (17). Talri-w the Fecrtial time 

derivative of (17)> one Pinds that 

2 33m where G a -  2 s  

G s in  Hence the Iliaxiouum current density w i l l  be OE the order of 
r 

For values of p, u), r, and y applicable t o  the earth the 

current a t  1 Re becomes 

a current so feeble that its perturbing effect  on the dipole ‘it 

f i e l d  is completely mgligible, as was assumed i n  solving for  d . 
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The electric f i e l d  (16) would be seen by 8 stationary 

observer at point 6, 0, 6). Its effect on charged particles in 

the Iwgwtic f i e l d  (i.e., on the low energy plasm par5icles 

themsel-es 8x3 also on mare energetic pa.rticlcs which m y  be 

present) i s  most easily understood by noting that the field 

of (16) vanishes when transformed to a refersnce frame rotating 

with the sghe-.-e. 

(for u) r << c): 

The f icL& 5: in the rotating frsne is 

Using x 2 = (r w s in  9) $ and making use of (loa) for 5, 
one finds that $ 6 x ?) x 

B 

z 1 
E?? s i n  e [sin y cos e cos (9 - wt)  - cos y sin 91 

+ { s in  8 [ s in  7 sin 8 cos (9 - urt) + cos y cos 
r 

I 

f i b  h 
where er, eey and e are  a set of unlt vectors i n  the spherical PI 
cmrdinate system. Btrt the components of 3 given by 

eqiition (16) are jus t  t he  negative of the components above 



when the expansion ( 6 )  is used for  cos $. 

rotating frame $ = 0, and charged particles undergo no 

3 x 3 drift or energimtion b u t  appear t o  m ~ v e  just  as they 

normally would i n  a s t a t i c  dipole magnetic f i e ld .  

special case when and are antiparallel  (the situation 

treated by Davis [l*])sin 7 = 0, cos y = -1, and the electric 

f ie ld  (16) in  the res t  frame becomes: 

Therefore, i n  the 

In the 

A 2 = - ( 9 s i n  01 G~ + ( 9 sin Q cos e) ee 
r r 

i 

which is Davis' result. 

It is interesting t o  examine the motion of particles i n  

the combined electric and magnetic fields of the non-rotating 

reference frame t o  see how co-rotation of the plasma with the 

sphere is achieved. The electric drift velocity, ve, is: 

= G x ? ) ,  
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fi  

*ere Bo is  a unit vector in the direction of the  magnetic field.  

l%m?ssion (22) state6 that the electric drift velocity is equal 

to the c q o n e n t  of x f) which is perpendicular t o  Though 

t h i s  implies co-rotsticm of sphere and plasma i n  the  special 

case when nagnetic and rot-ztional axes are aligned (parallel or - 
antiparallel), it does not, by itself, imply co-rotation 

the general case considered &re2 

The explicit mress ion  for vB, with eqmtions (16) for 

2 and (loa) for 3, is: 

+ [ s i n  y sin (9 - w t )  1 C sin y cos o cos (9 - w t )  
A - cos y s i n  8 3 ee 

A 
This reduces t o  (wr sir?, 0 )  e 

7 = o or f (i.e., when rotational and magnetic axes are 

p a r a ~ ~ ~ l ~ ~ l  or a n t i p m e l )  or for  (# - at) = o or 6 (i.e., 

at points lying in the plane which contains the  rotational 

indicating co-rota+,ion--for 9-- 



and magnetic axes). For a J l  other orier.tations 

pE f (cur sin e) e@; that is, in  general the % x 'ft drif't 

alone does - not cause co-rotation of plasms and sphere. 

Nevertheless, the plasma particles do, on the average, 

rotate with the sphere; they do so because their kinetic energy 

88 seen in the r e s t  frame is slightly greater when the 

@-component of the i r  motion a,long the l ines  of force is in 

the direction of the sphere's rotation than when it is in 

the opposite Cirectim. 

of &mi accelextion wherein a partide is reflected from 

regions of magnetic field moving, alternately, in the same 

and opposite directions as the particle itself. 

But this is sjmply a special instance 

To illustrate this effect, we e a u a t e d  the tinre rate of 

change in kinetic energy W of a particle moving i n  the  con- 

bined electr ic  and magnetic fields as seen i n  the res t  Frame. 

N o r t h r u p  [I9631 gives this rate as: 

- dW = e E . d + M  i3B 
d t  

where d is the veloci%y of a particle's guiafng center and 

M is the particle 's  magnetic rmment. In  the present w e  

%W = 0. Therefore, we are concerned only with U' , the 
-9 

0 
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conponent of d perpendicular to the magnetic field, and 

specifically, only with that part  of gA other than the 

3 x 3 drift, sir-ce the 2 x 2 drift can contribute nothing t o  

the energy change. We take 8k t o  consZst of the magnetic 

gradient and line curvature d r i f t s ,  which in a curl free magnetic 

f ie ld  may be a 0 3 l b M  t o  give 

With this expression, and using the  equations already given for 

3, 3, and cos t, we obtttin: 

1 dW 
f a t  

%I s in  7 s i n  Q sin (@ - c u t )  cos f 
(1 + 3 cos2 $) 

1 4- cos 2 * )+L}* 
Bm 2 2 (2 - B) ( 

Bm 1 + 3 cos f I 
This equation reveals several interesting features of particle 

mot ion: 

(a) The fractional change of er?ergy per unit t i m e  has a 
limiting value, ~I.U s i n  y ,  which it may approach f o r  

certain combinations of the other parameters. 
earth, sin y 5 x 

For tlie 

(b) The rate of energy change is  independent of radial dis- 
tance (except 8s this  enters implicitly in  other terms, 
such as B / h )  wd is independent of the magnetic moment 
o f t h e  sphere. 
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(c) The rate of energy cnange is anti-symnetrical about the 
magnetic equator (because of the cos 

the  plane containing p and (0 (because of the tern 
term) and about 

4 4 

sin (pI - ut)). 
(a) Only a minor part of the energy change (that associated 

with the last (E/&) tern in  the curly bracket of 
equation (24)) i s  due t o  M --• the remsinder results 
from e E U. 

aI3 
4 - 0  a T’ 

The anti-symnetry about the magnetic equator causes a 

particle t o  lose (gain) as much energy i n  going from one mirror 

t o  the equator as it gains (loses) i n  going from the . .  equator t o  

i t s  next mirror. Thus the particle kinetic energy at each mirror 

is  the same but the average kinetic energy is higher during the  

forward” bounces than during the “backwardt’ bcunces. lt  
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v. CommoNs 

A perfectly conducting, uniformly magnetized sphere 

rotating i n  a tenuous, conducting plasma causes the plasma t o  

rotate with it, regardless of t h e  relative orientation of the 

sphere’s magnetic and rotational axes. 

or anti-parallel, co-rotation is echieved wholly through the 

E x 5 d r i f t  resulting from the  2 field generated in  the  rest 

frame by the rotating sphere. 

anti-parallel, co-rotation is achieved through the combined 

effects of 2 x 3 drift and Fermi acceleration. 

the  e lectr ic  f ie ld  in  a reference f’rame rotating with the sphere 

is identically zero. 

If the axes are parallel  

4 

If the axes axe parallel or 

I n  either case 

We conclude f’rom our results that  plasma surrounding a 

rotating msgnetized body will rotate w i t h  the body as shown 

here, regardless of whether the magnetic f i e ld  of the  body is 

symmetrical (as i n  the present case of the uniformly magnetized 

sphere) or not, so long as the requirements on conductivity are 

the same as those used here, and so long as the rotating body, 

i t s e l f ,  is the  sole significant magnetic source, for  then - a t  
vanishes in  the rotating frame. In  a distorted magnetic f ie ld  

such &8 that  i n  the earth’s magnetosphere, hawever, where 

there are (non-corotating) magnetic sources i n  addition t o  the 

a s  



25 

earth itself, there can be no preferred reference fl-ame i n  

which the electric field. is identically zero. For even i n  an 

irregularly-movlng; frame which "moves with the magnetic f ield 

lines", there is a - '' ah3 one expects that particles observed 

in any reference frame w i l l  accumulate or lose energy over many 

bounces. 

aligned and fixed i n  space i n  such a manner (i.e., perpendicular 

t o  the ecliptic plane) as t o  provide a magnetosphere with a 

non-time-wy5n.g structure, one could further anticipate that  

particle energy gains and losses would be anti-symnetr5ca.l 

about the noon-midnight plane [Hones, 1s31. However, in the 

actual case of atime-varying distortion of the field, it is not 

obvious that there w i l l  be any such anti-symmetry; therefore 

the electr ic  f ie ld  generated by the earth's rotation may cause 

a cumulative change in  particle energy and position over m y  

revolutions around the earth, providing a mechanism for  diffusion 

of plasma and of higher energyparticles though the magnetosphere. 

a t  

If the earth's magnetic and rotational axes were 

It is probably very important, when studying the effects 

of the time-varying configuration of the magnetic f ie ld  i n  the 

magnetosphere t o  take account of the plasma's tendency t o  cancel 

the paralh1 component of the electr ic  field, as we have done 

i n  this  pqer ,  since so l i t t l e  charge separation is  required 

t o  accomplish this (see Section III). The nature of the 
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electric field is completely ciltered by this effect, and it is 

likely that conclusions reached regarding particle motions 

f'rm a model in which conductivity of the plasma is neglected 

(such as Terletzky's) w i l l  be quite misleading. 
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F5gm-e Caption 

Figure 1. Coordinates used i n  derivation of electric field 

around rotating, conducting magnetized @here. 

. 
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